7. An airplane is flying through a thundercloud at a height of 2000 m. If there is charge concentrations of 40 C at a height of 3000 m and -40 C at a height of 2000 m, what is the electric field exper

7. An airplane is flying through a thundercloud at a height of 2000 m. If there is charge concentrations of 40 C at a height of 3000 m and -40 C at a height of 2000 m, what is the electric field experienced by the airplane? [7.19 x 105 N/C]

8. Three charges of Q1=3 nC, Q2=8 nC and Q3=-5 nC are distributed on an equilateral triangle as seen in the figure below with equal distance of r=500 mm and θ=60°. Calculate the midway electric field between charges Q2 and Q3. [1.875 x 103 N/C, 4.4° below +x axis]

9. A plastic ball of mass 2 g is suspended by a string on length 20 cm in a horizontal electric field with strength of 1 x 103 N/C, as shown in the figure below. If the ball is in equilibrium when the string makes a 15° angle, what is the net charge distributed on the ball? [5.25 μC]



10. Charges Q1=6 nC and Q2=3- nC are separated at a distance of 60 cm. The third charge, Q3=12 nC is to be placed at an appropriate distance so that the net electrostatic force among all the three charges will be zero. Find the position of Q3 to be placed. [1.45 m after Q2]

11.An electron is accelerated by a constant electric field of magnitude 300 N/C.

a) Find the acceleration of the electron [5.27 x 1013 m/s2]

b) With the answer from a), find the electron’s speed assuming it starts from

rest with t=1 x 10-8 s [5.27 x 105 m/s]

12.In a particle beam, a proton has a kinetic energy of 3.25 x 10-15 J. What is the

magnitude of the electric field that will stop the proton in 125 cm? [1.63 x 104


13.A proton accelerates from rest in a uniform electric field of 640 N/C. At a finite amount of time, its speed is 1.2 x 106 m/s.

a) Find the magnitude of the acceleration of the proton [6.12 x 1010 m/s2]

b) How long does it take for the proton to reach 1.2 x 106 m/s? [19.6 μs]

c) How far the proton would have moved in that interval? [11.8 m]

d) What is its final kinetic energy? [1.2 x 10-15 J]

14. Figure below shows an electrostatic deflection system consisting of two parallel

plates, each of 2.5 cm in length with a separation distance of 0.40 cm. The centre of the plates is situated 20 cm from a screen. A potential difference of 60 V is applied between the plates which creates an electric field in between the plates. An electron of speed 3.1 x 107 m/s enters the region at right angle to the field. With this information given, calculate

a) Time taken for the electron to pass through the plates [8.06 x 10-10 s]

b) Electric field strength between the plates [1.5 x 104 N/C downwards]

c) Force on the electron due to the electric field [2.4 x 10-15 N upwards]

d) Acceleration of the electron along the direction of the electric field [2.64 x

1015 m/s upwards]

e) Verticalcomponentofvelocityofelectronwhenitleavestheregionbetween the plates [2.13 x 106 m/s]

15.Two parallel plates are illustrated below that have a uniform electric field of 6100 N/C and directed to the right. A charge of +1e with mass of 1.67 x 10-27 kg is inserted between the two plates.

a) Find the electric force exerted on the charge [9.76 x 10-16 N towards the


b) Find the acceleration of the charge [5.84 x 1011 m/s2]



c) Are the direction of the electric force and charge the same? Justify your answer.

d) Calculate the potential differences between the two parallel plates [305 V]

e) Calculatetheworkdonebytheelectricforcetomovethechargefrompoint

A to point B with the distance ‘d’ [4.88 x 10-17 J]

16.A positive charge of +9 x 10-9 C is located at the origin. How much of work is required to bring a positive charge of +3 x 10-9 C from infinity to the location x = 30 cm? [8.09 x 10-7 J]



Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
The price is based on these factors:
Academic level
Number of pages
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more